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Abstract 

The problem of anomalous solute transport in a semi-infinite two-dimensional fractal nonhomogeneous 

porous medium is posed and numerically solved. Initially, the fluid in the medium is considered solute free. 

Nonhomogeneity of the medium is expressed by linear and quadratic expressions of spatial coordinates for 

velocity components and diffusion coefficients respectively.  

 

Introduction 

That the degradation of air, water and soil has been a major problem, researching solute transport in flow 

media is demanding great consideration by scientists. This transport of matter can be described by the 

advection-dispersion equation. It is a partial differential equation in space and time that is of much significance 

in such diverse disciplines as chemical and petroleum engineering or bio and soil physics [1]. For example, 

the advection-dispersion equation can be used to determine the pollutant concentration downstream from 

intended mining operations in order to predict and plan how to reduce their environmental footprint.  

Lindstrom and Boersma [2] have researched analytical solutions for one-dimensional solute transport through 

media idealized as homogeneous. However, the actual solute permeation through air, soil or groundwater 

tends to be position dependent. To account for this heterogeneity, spatially-dependent dispersion and velocity 

should be considered. This has been solved analytically for special cases in one dimension [3–4]. Numerical 

solutions are required for cases that are more general and for problems in two or three dimensions [5–6]. 

Dehghan [7] employed weighed explicit finite difference method (EFDM) for one-dimensional 

advection-dispersion equation with increased accuracy of the obtained numerical results if compared to that 

of standard finite difference methods. Karahan [8] employed implicit finite difference method (IFDM) for 

one-dimensional advection-dispersion equation using spreadsheets. Walter et al. [9] used Crank-Nicholson 

central difference scheme in one dimension to model soil solute release into runoff with infiltration. Thanks 

to being unconditionally stable IFDMs can give great opportunity to use larger step lengths though extremely 

large matrices must be manipulated. For this reason, IFDMs is more efficient than EFDMs because by using 

IFDMs calculations can be manipulated at any time and coordinate step lengths. EFDM is also simpler in 

addition to being computationally more efficient. S. Savovic and A. Djordjevich have solved the problem of 

one-dimensional advection-dispersion equation with variable coefficients by using EFDM [10] and they 

expanded their work by solving the two-dimensional ADE in semi-finite media [11]. In this paragraph 

two-dimensional ADE with variable coefficients in semi-finite media is solved using IFDM and the problem 

is considered in fractal porous media in next paragraph. Dispersion unsteadiness is another variation that is 

allowed in order to accommodate the finding by Freeze and Cherry [12] that the dispersion is proportional to 

the n th power of velocity, with the exponent n ranging from 1 to 2 [11]. 

Mathematical model of the problem 

Let solute particles of a pollutant be entering a body of air, soil or water (including groundwater) at uniform 

rate at some location, continuously for a fixed amount of time. In other words, there is a stationary point-source 

emitting a uniform pulse of pollutants (Fig. 2.1). This could be a smokestack, volcano, sewage outlet, or 

infiltration from a garbage dump, septic tank or tailings pond that is uniformly active for a fixed period of 

time. From such point-source as the origin of mutually perpendicular horizontal x  and y  axes 

( ) yx 0;0  defining a horizontal plane, solute particles are transported by diffusion and 
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convection mainly downstream in the longitudinal direction chosen for the x -axis (with the y -axis along the 

transverse direction) [11]. 

Let the velocity components of the flow field in x  and y  directions at position ( )yx,  in the horizontal plane 

be ( )txu ,  and ( )tyv , , respectively. Both satisfy the Darcy law if the medium is porous; or laminar flow 

conditions otherwise. Further, let ( )txDx ,  and ( )tyDy ,  be longitudinal and transverse components of the 

solute dispersivity parameter at the same position, respectively [67]. The linear advection-dispersion partial 

differential equation in two-dimensional horizontal plane medium may be written in the following general 

form [11]: 

Fractional advection dispersion equation can be written in the following form 
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where C  is solute concentration, xD  and yD  are diffusion coefficients, u  and v  velocity components, 

0 1  , 
10 1   and 

20 1   are orders of fractional derivatives with respect to t , x  and y  

respectively.  

Here we used exponential functions to express diffusion and velocity components [11]. 
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where 
0xD  and 0yD  are initial diffusion coefficients at the ( )0,0  point. 

0u  and 
0v  are initial velocity 

components at the ( )0,0  point. )exp()(1 mtmtf −=  and )exp()(2 mtmtf =  are exponential given 

functions, a  and b  are nonhomogeneity coefficients. m  is unsteadiness coefficient of flow. 

The numerical algorithm 

We can rewrite the equation (1) in the following form 
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In order to solve the fractional advection dispersion equation we use Caputo fractional derivative formula [3]. 

We used following set function to approximate equation (3) [13]. 

1 2{( , , ) :0 , 0 , 0 }x y t x L y L t  =        
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We approximated (3) equation using explicit finite difference scheme [13]. 
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Equation (4) can be written in the following form 
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  (5) 

Equation (5) is a recurrent formula and the next values of concentration is calculated step by step. So as to 

solve the equation we need to include initial and boundary conditions. 

0;0;0,00

, == tyxC ji       (6) 

Equation (6) is the initial condition. Boundary conditions are calculated in the x  and y  directions in the 

following form. 
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(7) and (8) are boundary conditions where  1,1,1,1 −=−= RjNi , 

1h

x
N = , 

2h

y
R =  are the grid 

dimension in the x  and y  directions, respectively, x  is the distance in direction x  at which 0=
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Numerical analysis 

After solving the initial-boundary problem we obtained following results. 
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Fig. 1. Concentration field where time limit sT 1000= , mYmX 5,1,5,1 == . The orders of derivative with 

respect to x  and y  directions 1,1 21 ==  . 

 

 
Fig. 2. Concentration field where time limit sT 1000= , mYmX 5,1,5,1 == . The orders of derivative with 

respect to x  and y  directions 9.0;9.0 21 ==  . 
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Fig. 3. Concentration field where time limit sT 1000= , mYmX 5,1,5,1 == . The orders of derivative with 

respect to x  and y  directions 7.0;7.0 21 ==  . 

 The results are compared in figures of 1-3 by using different fractional orders of derivatives with 

respect to coordinate components. By considering the figures it can be seen that decreasing the order of 

derivatives leads to wider spreading of concentration profiles. 

 

Conclusion 

The problem of filtering and transporting suspension in a two-dimensional porous medium with a fractal 

structure is considered. Solute transport in such media is described by an equation with fractional derivatives 

both in time and in coordinate. On the basis of the numerical solution of the equation with the corresponding 

initial and boundary conditions, it was shown that a decrease in the fractional derivative with respect to time, 

weakens the transport process. A decrease in the order of the fractional derivative with respect to coordinates, 

on the contrary, accelerates the diffusion process, i.e. the “fast diffusion” effect appears. 
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