

ANTI-RADICAL ACTIVITY OF HEXAHYDROXYDIPHENOYL-1-(O-B-D-GLUCOPYRANOSIDE)-2-(O-4-D-GALLOYL-B-D-GLUCOPYRANOSIDE)

Sayfiyeva Kh. Dj¹,

Ergashev N. A.²

¹-Alfraganus University.,

²- Institute of Biophysics and Biochemistry under NUUz,

Republic of O'zbekistan, Tashkent

xamida.djurayevna@mail.ru

Abstract

It is known that active forms of oxygen in the body maintain cell homeostasis and participate in oxidation-reduction processes, while excess production has a destructive effect on the cell and its structures. As a result, a number of pathological conditions arise. The development of free-radical processes in human tissue cells by many endogenous and exogenous pathways causes extensive oxidative damage, leading to various human diseases [1]. Therefore, the search for and study of regulators of free-radical processes based on biologically active compounds of plant origin remains relevant. In this regard, polyphenolic compounds are of particular interest, since they have long established themselves as powerful antioxidants [2]. As is known, polyphenolic compounds are an inexhaustible source of drugs with various therapeutic effects [3].

Methodology

To evaluate ARA in this work, we used the method of spectrophotometric measurement of the kinetics of the reduction of molecules of the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) by antioxidants [4]. To calculate various kinetic parameters of the chemical reaction, two points were used: 0.15 and 3.0 minute indicators. In this regard, a more informative method is considered to be the use of compounds bearing a free valence, which are stable organic radicals, in particular the stable radical of DPPH [5], since the AOA of hydrolyzable tannins is studied by their reduction of this stable radical. When hydrolyzable tannins are added to an alcohol solution of DPPH, the free-radical molecules are converted to a non-radical form, and the intensely violet solution of DPPH is discolored.

Results

In our studies, the antiradical activity of the polyphenol hexahydroxydiphenol-1-(o-b-d-glucopyranoside)-2-(o-4-d-galloyl-b-d-glucopyranoside) towards DPPH was analyzed. The experiments were carried out at concentrations of the polyphenolic compound of 5-10-15-20-25 μ M. The concentration of 5 μ M of the polyphenolic compound increased to 40.5 \pm 3.1%, the

concentration of 10 μ M to $75.7\pm2.4\%$, the concentration of 15 μ M to $83.8\pm0.2\%$ and the concentration of 20-25 μ M to 83.8. It was found that it neutralizes by $83.8\pm0.2\%$ and by $83.9\pm0.6\%$. The obtained results show that the polyphenolic compound exhibits high antiradical activity in low concentrations.

References

1. Kiokias S., Proestos C., Oreopoulou V. Effect of natural food antioxidants against LDL and DNA oxidative changes // *Antioxidants* (Basel). – 2018. – Vol. 7(10). – ID. 133. doi: 10.3390/antiox7100133.
2. Silva R.F.M, Pogačnik L. Polyphenols from food and natural products: neuroprotection and safety // *Antioxidants* (Basel). – 2020. – Vol. 9(1). – ID. 61. doi: 10.3390/antiox9010061.
3. Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications // *Biotechnol Report* (Amsterdam, Netherlands). – 2019. – Vol. 24. – ID. e00370. doi: 10.1016/j.btre.2019.e00370.
4. Pochinok T.V., Tarakhovsky M.L., Portnyagina V.A., Denisova M.F., Vonsyatsky V.A., Alexandrova A.N., Melnichuk V.A. Express method for determining the antiradical activity of medicinal substances // *Chem. Pharm. magazine* – 1985. – No. 5. – pp. 565-567. Pochinok T.V., Tarakhovsky M.L., Portnyagina V.A., Denisova M.F., Vonsyatsky V.A., Alexandrova A.N., Melnichuk V.A. Express method for determining the antiradical activity of medicinal substances // *Chem. Pharm. magazine* – 1985. – No. 5. – pp. 565-567.
5. Salakhutdinov B.A., Gayibov U.G., Maksimov V.V., Sonkina S.N., Tukfatullina I.I., Uzbekov V.V., Salikhov Sh.I. Effect of gossypol enantiomers on model and biological membranes / International Symposium on Phenolic Compounds. Moscow, 2009. – P. 242-243.